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Abstract: Electric vehicles (EVs), during a route, should normally operate at the desired speed by
effectively controlling the power that flows between their batteries and the electric motor/generator.
To implement this task, in this paper, the voltage source AC/DC converter is considered as a
controlled power interface between the electric machine and the output of the DC storage device;
the DC/DC converter is used to automatically regulate the battery operating condition in accordance
to the profile of the acting on the vehicle wheels, unknown external torque. Particularly, the speed is
continuously regulated by the vehicle driver via the pedal while all other regulations for absorbing
or regenerating energy are internally controlled. The driver command is acting as speed reference
input on a PI outer-loop motor speed controller which, in its turn, drives a fast P inner-loop current
controller operating in cascaded mode. In a similar manner, the machine and the battery performance
are self-regulated by a pure PI current controller that achieves maximum electric torque per ampere
operation of the motor and by a PI/P cascaded scheme for the DC-voltage/battery–current regulation,
respectively. In order to exclude any possibility of instabilities and adverse impacts between the
different parts, a rigorous analysis is deployed on the complete electromechanical system that involves
the motor, the batteries, the converter dynamic models and the proposed controllers. Modeling the
system in Euler–Lagrange nonlinear form and applying sequentially suitable Lyapunov techniques
and the time-scale separation principle, a systematic method for tuning the gains of the inner- and
outer-loop controllers is derived. Therefore, the proposed controller design procedure guarantees
asymptotic stability by considering the accurate system model as a whole. Finally, the proposed
approach is validated by simulating realistic route conditions, performed under unknown external
torque variations.

Keywords: electric vehicle control; electric vehicle modeling; cascaded control; stability analysis;
power electronics; Lyapunov techniques; nonlinear systems

1. Introduction

Vehicular industry and especially electric vehicle (EV) industry is going through an era of
massive redeployment. Many companies started basing their new models of cars around electricity;
a justified outcome if one considers the abundant benefits that EVs offer. Zero emissions, high power
efficiency and low noise pollution constitute an environmentally friendly framework that encourages
the dominance of EVs in transportation [1,2]. The EV penetration into transportation helps countries
to be less dependent on foreign oil imports, while in a personal level low maintenance of electric
motors and cheap electricity tariffs, in contrast to fuel prices, comprise them to be cost effective [3].
Incentives and tax rebates contribute to the substantial reduction of the EV operation cost. The merits of
EVs on economic issues is extended further due to the combined operation with the renewable energy
sources [4] and the possibility of providing ancillary services to the grid [5,6]. However, the problem of
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energy storage, the limits on travelling distance and the long time of charging the batteries remain their
basic drawbacks. Furthermore, one should keep in mind that the battery pack replacement, when is
needed, is a very expensive obligation with environmental burden [7]. Vehicles that combine an
electric motor with internal combustion engine, known as hybrid electric vehicles (HEVs), can reduce
some of the drawbacks [8,9], but EVs with only battery sources constitute the most environmentally
friendly solution.

By their nature, EVs are complex electromechanical structures basically comprised of an electric
storage system, an electric motor and fully controlled power electronic devices [5,10]. The latter
are regulated to ensure fast and smooth response, based on: (i) the driver decisions, imposed by
the road and the driving conditions and, (ii) the automatic tracking to the best possible way of
recharging/discharging the batteries and of operating most efficiently the electric machine during
a route. EVs can recapture energy via the regenerative mode of operation of the electric machine
during vehicle braking or when they slow down via the regenerative mode of operation of the electric
machine. The energy recovered is used to recharge the batteries while the efficiency of the electric
machine can be optimized to the maximum torque per ampere. Among the different kinds of batteries
and electric machines that have been used in EVs, the lithium-ion type (Li-ion) batteries and the
permanent magnet synchronous motor (PMSM) are the most popular [9,11]. PMSMs can be classified
according to their rotor geometry and/or to their magnet arrangements. Among the different kinds
used in EV applications, primarily the interior PMSM and secondly the surface-mounted PMSM
are dominant [11–14]. The first one behaves like a salient pole motor while the second one acts like
a cylindrical rotor PMSM. In the present case, without loss of generality, a non-salient PMSM is
considered and our focus is given to the challenging issue of investigating and designing effective
controllers that ensure reliable adaptation to the desired and optimal operation of the PMSM in
accordance to the aforementioned goals.

The majority of the control strategies proposed for EVs mostly focus on system
optimization [15,16] and on holistic management techniques [17–19]. In the field of dynamic control
designs, different schemes based on conventional linear or nonlinear techniques, such as sliding mode
and intelligent control techniques, are proposed [20–29]. In most of them, however, the dynamics and
the stability of the whole system are not investigated; only in [26] an attempt that combines fuzzy
logic control with the property of input-to-state stability of the complete nonlinear system is presented.
Certainly, various attempts concentrate on dynamics and stability of only some special system parts;
in this frame, special attention has been given to applying different control techniques for the PMSM
speed regulation [30–34] and on the batteries modeling and control [35,36]. Also, power electronic
devices are individually analyzed mainly on the basis of standard linear approximations and feedback
cancelation of the nonlinear terms [37]. Hence, as it is evident, the stability of the system is partially
investigated, or it is omitted at all. The familiar to the industrial engineers cascaded PI control scheme
is not so far applied on the entire system of an EV; again, only isolated applications on the electric
motor drive systems have been proposed [38,39] while as explained in the following paragraph, it
seems important to extend this technique to more complex systems driven by power converters such
as EVs are.

Cascaded control is one of the most successful and extensively used methods for implementing
local and independent feedback loops [40], and, indeed, this is the main reason for adopting it in
this work. In simple industrial applications, cascaded loops are easily, and many times heuristically,
implemented. The design of such controllers in more complex and perhaps nonlinear systems is
not yet an easy task since there does not exist a systematic procedure of analysis for these cases.
Thus, considering the EV electromechanical system as a whole we develop a novel, though complicated,
method of analysis that bridges this gap by providing independent and simplified control loops with
guaranteed stability of the entire system. To clarify the innovations introduced by the proposed
approach it is necessary firstly to understand the merit of choosing this control scheme. In a cascaded
control system there is one or more control loops inside the primary loop, with each controller output
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to be the reference input of the next one; there is usually one inner-loop controller inside the primary
loop, which constitutes the outer-loop controller. In most applications the purpose of the inner-loop
is to compensate quickly the disturbance so that its impact on the outer-loop controller response is
small. Loops that correctly implement the cascaded control process can clearly reduce the impact of
disturbances. This happens because the state used in the inner-loop feedback acts directly against the
disturbance [40,41]. This enables the outer-loop to respond for upsets effectively and quickly. Another
critical point for applying cascaded control schemes is the fact that the inner-loop variable must be
directly influenced by the controlled input of the system. This causal relationship is required so that
the feedback control loop to act properly and to enable a solution when the system is non-minimum
phase with respect to the desired control primary variable. In this situation, the outer-loop controller
performs the main task indirectly via the regulation of the inner-loop variable, and as pointed out
in [42], this is the case on regulating the output voltage of power converters. In our case the adopted
approach consists of a pure PI closed-loop current controller and two cascaded PI-P controllers (outer-
and inner-loop, respectively) designed to satisfy the main control goals of an EV system; i.e., optimum
PMSM flux function, regulation of the motor velocity based on the driver decisions and automatic
operation of the battery charging performance. The pure PI controller and the cascaded PI–P controllers
are developed to provide directly the duty-ratio input components of the converter interfaces. The
whole design and analysis is employed on the entire EV system model as it is presented on the d− q
synchronously rotating reference frame with the inner- and outer-loop controllers taken into account.
To the best of the authors knowledge, such an analysis for the aforementioned control scheme with
respect to the entire nonlinear EV system model has not yet been reported. The reason is that the
complexity of the EV system nonlinear mathematical description, gives rise to substantial difficulties
on the development of a rigorous and reliable closed-loop system stability analysis although simplified
independent-loop controls are applied.

A solution to the previously discussed problem is proposed in this paper and this constitutes
the main contribution since asymptotic stability is proven at the desired equilibrium for the entire
closed-loop system. Particularly, since in the present case, the desired equilibrium differs from the
origin and nonzero values are expected in steady state for the external inputs, the incremental model
of the system around the equilibrium is firstly obtained. The original system is an Euler–Lagrange
nonlinear system [43] and as it is proven in the paper, also the incremental model [44] can be in the
form of an Euler-Lagrange system with the inner-loop controllers involved. Furthermore, to proceed
with the stability analysis of the entire system, Lyapunov techniques are applied which at a first stage
prove global asymptotic stability (GAS) to the origin by suitably tuning the inner-loop controllers gains.
It is noted that since GAS of the inner-loop controllers can ensure rapid adjustment then considering
the outer-loop controllers to be slow enough, the latter can be tuned in a second stage by taking
into account the time-scale separation principle. Particularly, at this stage the current dynamics are
considered so fast that they can be neglected and the current states needed for the speed and the
DC-voltage control loop are directly substituted by the corresponding reference value coming from the
outer-loop speed and voltage controller, respectively. Both loops result in simple transfer functions
with parameters the outer-loop controllers gains. Then, after obtaining their closed-loop transfer
functions one can tune the gains in such a way that asymptotic stability is achieved with desired time
constants. To further examine the stability of the EV system at the desired operating point, simulation
results are conducted, which indicate a very satisfactory response. This is of great importance, since
a complete theoretical analysis of the EV closed-loop system additionally verified by simulations,
provides a useful design procedure in engineering practice.

The remainder of the paper is organized as follows. In Section 2, the complete EV system is
presented in a compact Euler–Lagrange form. In Section 3, the incremental model of the EV system is
also constructed in a manner that provides again an Euler-Lagrange system. The proposed cascaded
controllers are introduced in Section 4, while in Section 5 a complete and rigorous stability analysis
of the resulting closed-loop system is deployed in two separate steps that include the inner-loop
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and the outer-loop controllers gain tuning. In Section 6, extended simulations are conducted and
comparisons with conventional control schemes are discussed. Finally, in Section 7, some useful
conclusions are drawn.

2. EV System Model

In modern EVs, the electromechanical structure is comprised of a power electronic converter,
an electric machine, a mechanical transmission system and the driving wheels. The energy source
involves the battery and an energy management converter, while the auxiliary subsystem consists of
all the involved auxiliary DC loads (lights, climate system etc.) required in an EV [9,15].

In the present case, the most popular for EV applications Li-ion batteries are considered [45] and a
PMSM provides the needed torque on the car wheels. The power absorbed by the batteries or injected
into the system is controlled by a DC/DC bidirectional boost converter, while the PMSM is driven
through a three phase AC/DC voltage source converter [43]. It is well-known that a DC/DC boost
converter is usually employed in HEVs where a smaller battery pack is used. A DC/DC bidirectional
boost converter can be used in EVs fed only by battery sources ([11], Section 7.2 (§1.5)) in order to
provide an additional controlled input that allows to exploit the AC/DC converter to operate the
PMSM at maximum torque per ampere. Thus the DC/DC converter cost is compensated by optimizing
the PMSM operation. Figure 1 depicts the system under consideration.

Figure 1. The entire electric vehicle (EV) electromechanical system.

The entire mathematical representation of the previously described EV system can be formulated
as an Euler–Lagrange system, given below by Equation (1), wherein the equations of motion as well
as the ones of the electric and electromagnetic part, are given in the d − q synchronously rotating
reference frame [37], for both the power converters and the PMSM. For the battery representation,
electric circuit-based models are considered which are extremely useful for vehicle system level
analysis [11].

Mẋ = J(x, m)x− Dx + d, (1)

where x represents the state vector and m the controlled input vector and are provided respectively as

x =
[

Ids Iqs ωr Ibat VS VL Vdc

]T

and m =
[
mds mqs −mbat

]T
.
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Matrix M is a positive definite generalized inertia matrix, J(x, m) is the Coriolis and centrifugal
forces matrix, wherein the controlled input vector m of the duty-ratio component signals is included,
D is the damping matrix, while d represents the uncontrolled input vector that is considered as
disturbance. All mentioned matrices are defined below.

M = diag{ 3
2 Lds, 3

2 Lqs, J, Lbat, CS, CL, C},

D = diag{ 3
2 rs, 3

2 rs, b, Rser, 1
RS

, 1
RL

, 1
Rdc
},

J(x, m) = −J(x, m)T =



0 0 3
2 pLqs Iqs 0 0 0 3

2 mds
0 0 − 3

2 p(Lds Ids + ψm) 0 0 0 3
2 mqs

− 3
2 pLqs Iqs

3
2 p(Lds Ids + ψm) 0 0 0 0 0

0 0 0 0 −1 −1 −mbat
0 0 0 1 0 0 0
0 0 0 1 0 0 0

− 3
2 mds − 3

2 mqs 0 mbat 0 0 0


,

d =
[
0 0 −Tm V0 0 0 0

]T
,

where Ids, Iqs are the d- and q-axis stator current components and ωr is the rotor mechanical
angular velocity. Vdc stands for the DC-link voltage, Ibat stands for the output of the total battery
array, and VS and VL are the internal battery short- and long-term voltage drops, respectively.
Additionally, the control input of the battery-side boost converter is denoted by its duty-ratio mbat,
while mds and mqs represent the control inputs at the motor side, that actually stand for the d- and
q-voltage source converter duty-ratio components. Also, in the disturbance vector, the external
mechanical torque at the machine rotor is denoted by Tm and takes piecewise unknown constant
values, while V0 stands for the battery internal voltage and is set to a known (based on battery
specifications) constant value. It is mentioned that the electric equivalent circuit of the battery model
incorporates the fundamental principles based on cell discharging data. Specifically, the differential
equations for the voltage battery states VS, VL actually represent the voltage drops during diffusion-
and stored-charge process, respectively. The voltage drop during diffusing charge process in a battery
has the same form as that of a voltage across an RC circuit element and therefore is represented
by a short time transient response (VS for the short-term transient). On the other hand, the voltage
drop during stored charge process in a battery has the form of a slowly decreasing response that
represents the loss of batteries charge at rest and therefore describes a long-term transient (VL for the
long-term transient) ([11], Section 4.5). Table 1 provides the parameters of the system as they are used
in simulation studies in Section 6, while nomenclature is provided at the end of the paper.

The previous compact representation of the EV system will be the basis for the design of suitable
controllers that guarantee asymptotic stability at the system desired equilibrium as will be discussed
in the next sections.
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Table 1. System parameters.

EV Part Parameter Value

PMSM

rs 0.005582 Ω
Lds 17.3 µH
Lqs 17.3 µH
J 1.8 kgm2

b 0.003852 Nmsec
rad

p 9

DC-link Rdc 100 Ω
C 640 µF

Boost Converter Lbat 200 mH

Battery

Rser 0.0745 Ω
RS 0.0467 Ω
CS 703.6 F
RL 0.0498 Ω
CL 4475 F
V0 840 V

3. Incremental Model

In the present work, the main objective is to perform the stability analysis of the closed-loop
system, concerning a desired equilibrium at steady state, that generally differs from the origin by
taking nonzero values. To describe the system dynamics around a nonzero equilibrium, one has
to obtain the incremental model, with inputs, states and outputs to be the deviations from their
steady-state equilibrium values, respectively [39]. It is, therefore, essential to define, firstly, such a
possible equilibrium.

Denoting the equilibrium by

x∗ =
[

I∗ds I∗qs ω∗r I∗bat V∗S V∗L V∗dc

]T
,

wherein the elements I∗ds, ω∗r and V∗dc are predefined at their desired reference values, as implemented by
the proposed in the next section control loops. In particular, we set (i) I∗ds = Ids,re f = 0, i.e., the current
is considered zero in order to achieve optimal function of the EV motor, i.e., maximum torque per
ampere (perpendicular rotor and stator fluxes), (ii) ω∗r = ωr,re f , as it is manually provided by the car
driver through the car pedals, in accordance to road and driving conditions and (iii) V∗dc = Vdc,re f
be an arbitrary constant, adequate to support the converters duty-ratio operation under SPWM
(Sinusoidal Pulse Width Modulation) [37]. All the other five equilibrium values of x∗ vector and

the three equilibrium duty-ratio input components m∗ =
[
m∗ds m∗qs −m∗bat

]T
result from setting to

zero the derivatives of the 7th-order equation (1) by considering constant and piecewise constant the
disturbance components V0 and Tm, for this particular case, i.e.,

Mẋ∗ = 0 = J(x∗, m∗)x∗ − Dx∗ + d. (2)

Combining Equations (1) and (2), the equation that describes the incremental model of the system
is obtained as follows

Mėx = J(x, m)ex − Dex + (J(x, m)− J(x∗, m∗))x∗, (3)

where ex is defined as the difference between the state vector and its equilibrium ex = x− x∗.
Fortunately, the structure of matrix J(x, m) allows, after some manipulations, the term (J(x, m)−

J(x∗, m∗))x∗ to be split and rearranged to S(x∗)ex + G(x∗)em, where em is defined as the difference
between the system controlled input vector and its equilibrium em = m−m∗, and wherein matrices
S(x∗) and G(x∗) are provided as
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S(x∗) =



0 3
2 pLqsωr

∗ 0 0 0 0 0
− 3

2 pLdsωr
∗ 0 0 0 0 0 0

3
2 pLqs I∗qs − 3

2 pLds I∗ds 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0


, G(x∗) =



3
2 V∗dc 0 0

0 3
2 V∗dc 0

0 0 0
0 0 V∗dc
0 0 0
0 0 0
− 3

2 I∗ds − 3
2 I∗qs −I∗bat


.

Therefore, Equation (3) finally results in the following expression that describes the incremental
model of the EV electromechanical system,

Mėx = J(x, m)ex − Dex + S(x∗)ex + G(x∗)em, (4)

where ex represents the state vector and em represents the input vector of the incremental model.
It is noticed that the incremental model has a substantially different structure from the initially

used model given by Equation (1). In Equation (4) the external uncontrolled input vector does not
exist while two new terms are appeared; a linear term with respect to ex, namely the S(x∗)ex, and a
controlled input vector G(x∗)em. It is worth noting that both matrices S and G are dependent from the
particular equilibrium values.

Based on the extracted system incremental model three control schemes will be implemented,
with each controlled input task corresponding to the desired response of the PMSM and the
battery array.

4. The Proposed Control Scheme

The design and implementation of suitable control schemes that ensure an optimal and stable EV
system operation, is of great importance. The most considerable control goals for an EV system include
the operation of PMSM under optimal torque extraction, tracking of the motor and wheels speed at
the reference value and recharging or discharging the battery under constant DC voltage. The main
purpose of our design is to construct suitable control schemes satisfying the aforementioned tasks.
Since the overall system stability is very significant for the security and reliability of an EV operation
during a route, a rigorous method is developed, on the accurate nonlinear complete system model.
On the other hand, the controllers have to be as simple as possible and for this reason the cascaded
controller loops are selected. The cost of simplifying the controllers and using the cascaded scheme in
guaranteeing stability, is the need of a complex and multi-step stability analysis, performed in contrary
to the conventional heuristic design procedures used in such cases.

As previously discussed, the goal of the cascaded control is to improve the system performance
regardless of the effect of the external disturbances. In our case, fast inner-loop current controller is
used to compensate via the current variable the disturbance action very quickly, while the outer-loop
controller eliminates the difference between the controlled current variable and its reference signal.
The inner-loop controller is typically a P or a PI controller. The derivative action is usually not
needed to speed up the loop, since the inner-loop controllers are selected to be adequately fast.
Furthermore, in cases where the inner-loop reference value is not necessary to be exactly followed,
the I-controller term is no longer needed. Adopting this general frame and defining in the EV system
incremental model, the control input vector as

em ≡
[
em,ds em,qs −em,bat

]T
(5)

=
[
(mds −m∗ds) (mqs −m∗qs) −(mbat −m∗bat)

]T
,

the following confined control schemes are proposed, one for each input. Therefore, as mentioned
in the previous section, in order to achieve PMSM optimal (maximum torque per ampere) operation,
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it is essential to regulate the d-axis current Ids to zero. To this end, the following classic PI controller
is proposed, that actually provides the d-axis duty-ratio input component mds of the voltage source
converter as

mds = −kP,ds(Ids − Ids,re f )− kI,ds

∫
(Ids − Ids,re f )dt + md0, (6)

where the gains kP,ds and kI,ds are assumed positive constants, Ids,re f = I∗ds = 0 represents the d-axis
current reference value and md0 is an arbitrary constant. Then, it is obvious that the d-axis duty-ratio
error component em,qs of the voltage source converter is

em,ds = −kP,ds(Ids − I∗ds)− kI,ds

∫
(Ids − I∗ds)dt (7)

since m∗ds = md0 under these circumstances.
Now, in order to track the reference speed provided by the car driver, a suitable speed PI controller,

that makes use of the deviation between the rotor mechanical angular speed ωr and its corresponding
to the equilibrium reference value ωr,re f = ω∗r , is implemented. Specifically, the applied controller is
described by

Iq,w = −kP,w(ωr −ωr,re f )− kI,w

∫
(ωr −ωr,re f )dt, (8)

where kP,w, kI,w are positive constants.
The output Iq,w of controller in Equation (8) is used as the reference input of a faster inner-loop

current controller which provides the q-axis duty-ratio input component mqs of the voltage source
converter. However, since the main control task at this loop is implemented by the external loop
controller given by Equation (8), it is adequate to simplify the inner-loop current controller into a P
controller. Thus, the duty-ratio input component mqs is realized by

mqs = −kP,qs(Iqs − Iq,w) + mq0, (9)

where the gain kP,qs is a positive constant and mq0 is arbitrarily chosen to a constant value.
As is evident, a proportional controller can only decrease and not eliminate the steady state error

(no matter what is the magnitude of the selected proportional gain kP). Therefore, the resulting q-axis
current equilibrium value I∗qs at the desired steady-state of the PMSM is slightly different from the
reference value Iq,w used in Equation (9). Therefore, the related duty-ratio error component em,qs is
defined as

em,qs = −kP,qs(Iqs − I∗qs), (10)

where it is determined: m∗qs = mq0 + kP,qs(Iq,w − I∗qs).
In a similar manner, the controller that corresponds to the duty-ratio input mbat of the DC/DC

boost converter is designed. Specifically, a PI controller that regulates the DC-link voltage Vdc to a
predefined reference value Vdc,re f = V∗dc, that corresponds to the equilibrium, is firstly implemented
as follows

Ibat,V = −kP,V(Vdc −Vdc,re f )− kI,V

∫
(Vdc −Vdc,re f )dt, (11)

where the gains kP,V , kI,V are positive constants.
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Again, the output of Equation (11) is not directly used to act on the boost converter duty-ratio
input mbat, but stands as an intermediate reference value of an inner-loop P controller acting on the
battery current Ibat. The simple inner-loop P controller is thus chosen as

mbat = −kP,bat(Ibat − Ibat,V) + mbat0, (12)

where gain kP,bat is a positive constant and mbat0 stands for arbitrarily chosen to a constant value.
Once again, it is obvious by Equation (12) that the desired I∗bat is finally obtained although Ibat,V is

generally different from I∗bat. Therefore, it is defined

−em,bat = −kP,bat(Ibat − I∗bat), (13)

where now, m∗bat = mbat0 − kP,bat(Ibat,V − I∗bat).

5. Stability Analysis and Gain-Tuning of the Complete Controlled System

The proposed three controlled inputs em,ds, em,qs and em,bat, are realized by a PI, P and P,
respectively, fast inner-loop current controllers, while external slower PI outer-loop controllers are
needed to drive the last two P inner-loop current controllers in a dual cascaded scheme. As the
design of cascaded controllers is based on the time-scale separation principle [39], the stability analysis
presented in this section is divided into two separated parts. In the first part, the fast dynamics of
the system are studied with the inner-loop fast dynamics included in the analysis. In the second
part, we consider that the current loops transients are completed very fast and for this reason one can
suppose, without significant error, that all currents are almost identical to their references, allowing us
to take into account only the outer-loop slow controllers for the speed and the DC-voltage along with
the mechanical and DC-voltage equations, respectively.

5.1. Stability Analysis with the Fast Current Controllers Dynamics Involved

To proceed with our analysis we first consider the inner-loop control inputs in Equation (5) of the
incremental EV model by putting together Equations (7), (10) and (13)

em,ds = −kP,ds(Ids − I∗ds)− kI,dsec

em,qs = −kP,qs(Iqs − I∗qs) (14)

−em,bat = −kP,bat(Ibat − I∗bat),

where now the integral term dynamics of the first PI controller are expressed by the ec state as

ėc = Ids − I∗ds = Ids (since by de f inition I∗ds = 0). (15)

Substituting Equations (14) and (15) into Equation (4) and taking into account Equation (5),
after some algebraic manipulations, the following closed-loop system representation is obtained

M̄ ˙̄ex = ( J̄(x, m) + J̃(x∗))︸ ︷︷ ︸
Jcl

ēx − (D̄ + D̃(x∗))︸ ︷︷ ︸
Dcl

ēx, (16)

where the 8th-order state vector involves the integral term dynamics and is given by ēx = [ex ec]T .
The matrices appeared in (16) are given in the following, where it is considered I∗ds = 0.

M̄ = blockdiag{M, kI,ds}
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J̄(x, m) =


J(x, m)

− 3
2 V∗dckI,ds

0
...
0

3
2 V∗dckI,ds 0 . . . 0 0


and

D̄ = blockdiag{D, 0}

J̃(x∗) =



0 3
4 p(Lqs + Lds)ω

∗
r − 3

4 pLds I∗qs 0 0 0 0 0
− 3

4 p(Lqs + Lds)ω
∗
r 0 0 0 0 0 − 3

4 I∗qskP,qs 0
3
4 pLds I∗qs 0 0 0 0 0 0 0

0 0 0 0 0 0 − 1
2 I∗batkP,bat 0

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 3

4 I∗qskP,qs 0 1
2 I∗batkP,bat 0 0 0 0

0 0 0 0 0 0 0 0



D̃(x∗) =



3
2 kP,dsV∗dc − 3

4 p(Lqs − Lds)ω
∗
r − 3

4 pLds I∗qs 0 0 0 0 0
− 3

4 p(Lqs − Lds)ω
∗
r

3
2 kP,qsV∗dc 0 0 0 0 − 3

4 I∗qskP,qs 0
− 3

4 pLds I∗qs 0 0 0 0 0 0 0
0 0 0 kP,batV∗dc 0 0 − 1

2 I∗batkP,bat 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 − 3

4 I∗qskP,qs 0 − 1
2 I∗batkP,bat 0 0 0 0

0 0 0 0 0 0 0 0


,

which are defined through the matrix S̃(x∗) as follows

J̃(x∗) =
1
2
[S̃(x∗)− S̃(x∗)T ]

D̃(x∗) = −1
2
[S̃(x∗) + S̃(x∗)T ],

where S̃(x∗) =



3
2 kP,dsV∗dc

3
2 pLqsω∗r 0 0 0 0 0 0

− 3
2 pLdsωr

∗ 3
2 kP,qsV∗dc 0 0 0 0 0 0

3
2 pLds I∗qs 0 0 0 0 0 0 0

0 0 0 kP,batV∗dc 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 3

2 I∗qskP,qs 0 I∗batkP,bat 0 0 0 0
0 0 0 0 0 0 0 0


.

As a result, the closed-loop system representation with the fast inner-loop current controllers
included is as follows

M̄ ˙̄ex = [Jcl(x, m)− Dcl ]ēx. (17)
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The incremental closed-loop model (17) is now examined for its stability by applying nonlinear
Lyapunov-based techniques. To this end, we select the following Lyapunov function

V(ēx) =
1
2

ēT
x M̄ēx.

Then, its derivative is calculated as follows

V̇(ēx) = ēT
x M̄ ˙̄ex

= ēT
x (Jcl ēx − Dcl ēx)

= ēT
x Jcl ēx − ēT

x Dcl ēx.

As previously determined, matrix Jcl is antisymmetric and therefore the first term equals to zero,
and therefore the derivative of the storage function finally results in

V̇(ēx) = −ēT
x Dcl ē.x (18)

Matrix Dcl in Equation (18) is an 8 × 8 symmetric matrix with its last column and last row to have
all its elements equal to zero. Therefore, in order to ensure stability of the system in Equation (17),
Dcl has to be at most positive semidefinite, which simultaneously also means that the incremental
model in Equation (17) represents an Euler–Lagrange system. To that end, it is sufficient, the 7 × 7
upper block matrix in Dcl to be positive definite. Since this 7 × 7 matrix, denoted by Dc, can be written

in the form Dc =

[
A B
BT C

]
, where A, B and C are determined as follows,

A =


3
2 (rs + kP,dsV∗dc) −

3
4 p(Lqs − Lds)ω

∗
r − 3

4 pLds I∗qs 0
− 3

4 p(Lqs − Lds)ω
∗
r

3
2 (rs + kP,qsV∗dc) 0 0

− 3
4 pLds I∗qs 0 b 0

0 0 0 Rser + kP,batV∗dc



B =

0 0 0 0
0 0 0 0
0 − 3

4 I∗qskP,qs 0 − 1
2 I∗batkP,bat


T

and C =


1

RS
0 0

0 1
RL

0
0 0 1

Rdc

 .

we can recall the relative theory on characterizing a symmetric positive definite matrix based on Schur
complements [46], which provides

Dc > 0 ⇔ A− BC−1BT > 0 since it holds C > 0.

Therefore, based on Sylvester’s criterion [46], all leading principal minors of the matrix A −
BC−1BT should be positive. Taking into account that in our case Lds = Lqs, we conclude the relations
below that define the acceptable value regions for all the positive gains kP,i, while the integral gain
kI,ds can take any positive value.

kP,ds >
( 3

4 pLds I∗qs)
2 − 3

2 brs
3
2 bV∗dc

Rdc
3
8
(I∗qs)

2k2
P,qs −V∗dckP,qs − rs < 0 (19)

Rdc
1
4
(I∗bat)

2k2
P,bat −V∗dckP,bat − Rser < 0.
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As it is easily seen, all inequalities are independent of each other and therefore their solution
becomes a simple algebraic problem after the substitution of the parameter and the reference signal
values. It is noted that the first two inequalities may easily provide positive values for kP,ds and kP,qs,
since both the values of the viscous friction coefficient b and the stators resistance rs are usually very
small. Furthermore, the quadratic structure of the third inequality and the signs of the polynomial
terms indicate that always a positive value for kP,bat also exists.

Therefore, since Dcl ≥ 0, the investigated equilibrium of ex is globally stable and since Dc > 0,
then states ex asymptotically tend to zero. Nevertheless, from the structure of the closed-loop system
model (17) it is implied that ec = 0 when ex = 0, the only equilibrium is ēx = 0. Then we can apply
the La Salle Invariance principle [47]. In accordance to this principle, since V(ēx) is a continuously
differentiable, radially unbounded, positive definite function such that V̇(ēx) ≤ 0 and no other solution
can stay identically in S = {ēx : V̇(ēx) = 0} than the trivial solution ēx = 0, then the origin of system
(17) is GAS. Consequently, the equilibrium [x∗T , e∗c ] is GAS.

5.2. Stability Analysis with the Outer-Loop Controllers Involved

In order to complete our stability analysis it is essential to encompass the outer-loop controllers,
as provided by Equations (8) and (11) which regulate ωr and Vdc states, respectively, to their predefined
reference values. Basing our cascaded control design on the time-scale separation principle we
suppose that the outer-loop controller responses are much slower than the inner-loop ones. To this
end, the differential equations that describe the response of the aforementioned states are taken into
consideration, while the current loops dynamics are neglected and after applying Laplace transform,
the transfer function of each subsystem is obtained. In a second stage, based on the classic feedback
control theory, the closed-loop transfer functions that include the related PI outer-loop controllers are
designed to achieve the desired settling time, by suitably tuning the gain values. In contrary, the current
dynamics for Iqs and Ibat are not taken into account since these are considered fast enough and their
corresponding values are assumed to follow directly the outer-loop controllers output commands:
Iqs,w and Ibat,V , respectively.

To be more specific, we firstly consider the controller in Equation (8) related to motor rotational
speed ωr, which is provided by the third equation of (1),

Jω̇r = −bωr +
3
2

p(Lds Ids + ψm)Iqs −
3
2

pLqs Ids Iqs − Tm. (20)

Under the assumption that Ids reaches its reference value (which is equal to zero) very fast due to
the action of the PI current controller installed for Ids and that the current Iqs takes the value provided
by the outer-loop PI speed controller, Equation (20) can be written as

Jω̇r = −bωr +
3
2

pψm Iqs,w − Tm. (21)

Incorporating in the last equation the outer-loop controller in Equation (8), the slow dynamics of
the system can represented by Figure 2.

In the above mentioned expression (21) the last term is considered as disturbance and is omitted.
Therefore, by applying Laplace transform on Equation (21), one obtains the following transfer
function Gs1(s)

Gs1(s) =
Ωr(s)

Iqs,w(s)
=

3
2 pψm

Js + b

while the transfer function Cw(s) of the proposed PI controller is represented as
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Cw(s) =
Iqs,w(s)

Ωr(s)−Ωr,re f (s)
= kP,w +

kI,w

s
,

Then, the closed-loop system transfer function Gs1,cl(s) is calculated as

Gs1,cl(s) =
Ωr(s)

Ωr,re f (s)
=

Cw(s)Gs1(s)
1 + Cw(s)Gs1(s)

=
3
2 pψmkP,ws + 3

2 pψmkI,w

Js2 + (b + 3
2 kP,w pψm)s + 3

2 kI,w pψm
. (22)

Now selecting the PI controller gains kP,w, kI,w as follows
kP,w = J

3
2 pψmτw

kI,w = b
3
2 pψmτw

,

then, the closed-loop transfer function (22) becomes

Gs1,cl(s) =
3
2 pψmkP,ws + 3

2 pψmkI,w

Js2 + (b + 3
2 kP,w pψm)s + 3

2 kI,w pψm
=

1
1 + τws

. (23)

It is easily observed that the motor rotational speed ωr closed-loop transfer function results in
a first order representation with arbitrary selected time constant τw. It is noted that both gains are
functions of the system parameters and the desired time constant τw.

Figure 2. The ωr closed-loop slow dynamics (driven by the outer-loop controller).

In a similar manner, the related to the DC-link voltage (Vdc) outer-loop PI controller is analyzed
and tuned. Again it is assumed that the current dynamics can be neglected. Starting from the Vdc
differential equation (actually the 7th Equation of (1))

CV̇dc = −
Vdc
Rdc

+ mbat Ibat −
3
2
(mds Ids + mqs Iqs).

Then, for the outer-loop slow system dynamics it is again assumed that Ids reaches its reference
value which is equal to zero and Iqs converges to its equilibrium. Therefore, the last equation can be
written as

CV̇dc = −
Vdc
Rdc

+ m∗bat Ibat,V −
3
2

m∗qs I∗qs,

where Ibat,V is provided by the outer-loop DC-voltage controller and m∗bat takes its steady-state constant
value. Figure 3 represents the closed-loop system with the slow outer-loop controller involved.

Following a similar procedure as for the motor speed controller gain tuning the resulting
closed-loop system transfer function Gs2,cl(s) is provided now as follows

Gs2,cl(s) =
Vdc(s)

Vdc,re f (s)
=

m∗batkP,Vs + m∗batkI,V

Cs2 + (m∗batkP,V + 1
Rdc

)s + m∗batkI,V
. (24)
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Once again selecting the PI controller gains kP,V , kI,V as follows

kP,V = C
m∗batτV

kI,V = 1
Rdcm∗batτV

,

then, the closed-loop transfer function (24) becomes

Gs2,cl(s) =
m∗batkP,Vs + m∗batkI,V

Cs2 + (m∗batkP,V + 1
Rdc

)s + m∗batkI,V
=

1
1 + τVs

. (25)

It is easily observed that the DC-voltage closed-loop transfer function results in a first order
representation with arbitrary selected time constant τV . It is noted that both gains are functions of the
system parameters and the desired time constant τV . Also, the design is dependent from m∗bat which
takes values in the interval (0, 1), and it is pre-estimated by the designer.

Figure 3. The Vdc closed-loop representation with the outer-loop controller included.

From the closed-loop transfer functions (23) and (25), it is proved that the dominant system
response of the speed and DC-voltage states is asymptotically stable with a time constant selected by
the designer. It is evident that the inner-loop system stability is a pre-requirement for the stability of
the outer-loop controllers.

6. System Examination and Results

A detailed design of the three cascaded controller loops was implemented and examined through
simulations on a Simulink environment deployed exclusively for the entire EV electromechanical and
controller scheme. It did not used any of the existing Simulink/Matlab standard blocks for the power
converters, for the PMSM, etc. All the components and system parts have been accurately implemented
by their mathematical models. Parameters for all the several EV subsystems are summarized in Table 1,
while all controller gains were chosen in accordance to the stability analysis presented in the previous
section. The simulated operation mode of the PMSM was based on the new European driving cycle
(NEDC), often used as a typical profile for the EV velocity [48] in optimization studies. In the present
case, however, our intention is to indicate the good transient and steady state performance of the
proposed controller. Therefore only a small part of the NEDC cycle was selected, actually the one
corresponding to the urban driving cycle (UDC) that involves adequate speed and torque changes
for the evaluation of the dynamic response. The mechanical torque Tm during the selected route was
calculated in a standard manner by using the car force model that takes into account the gravitational,
rolling resistance, wind and inertial forces. The analytic expressions are thoroughly described in
bibliography [11]. Similarly, the PMSM speed command input profile of ωr,re f resulted directly from
the used UDC velocity profile via a constant transformation depending on the characteristics of the
vehicle mechanical transmission system. In accordance to the UDC modeling and the car force model
the different constant levels of the external torque Tm as well as its changing rates are depicted in
Figure 4. Figure 5 provides the mechanical angular velocity ωr, which clearly tracks its reference
value ωr,re f , without observable overshoots or oscillations, while in Figure 6, the regulation of the
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DC-link voltage to its constant reference value Vdc,re f = 1000 V is depicted. Both responses satisfied
the outer-loop controllers tasks since they follow very close the reference inputs. It is remarkable to
note that rather large changes of torque result in very smooth responses.

The inner-loop control responses are evaluated through the responses of the currents shown
in Figures 7–9. Particularly, in Figure 7 which represents the d-axis current, it is shown that the
current converges very fast to the reference value Ids,re f = 0, satisfying one of the main control goals,
i.e., the PMSM optimal torque operation. In Figure 8 it is indicated that the q-axis current response
follows the torque variations. The battery current Ibat, indicated in Figure 9, suitably responds to
provide the necessary power to/from the battery by injecting/extracting current in accordance to
the unknown external torque profile. The duty-ratio d- and q-axis input components mds and mqs

of the voltage source converter as these are realized by the proposed control scheme are presented
in Figures 10 and 11, respectively. Their values were inside the acceptable ranges and as shown in
Figures 10 the d-component duty-ratio takes on positive or negative values (also the q-component
duty-ratio can take positive or negative values) while the duty-ratio of the voltage source converter

obviously takes only positive values since it is calculated through
√

m2
ds + m2

qs. Finally, Figure 12
indicates the duty-ratio input signal mbat of the DC/DC boost converter with its values to be positive
between 0 to 1. All the three duty-ratio input signals have a very satisfactory form and effectively
drive the whole system to the stable equilibria without significant overshoots or oscillations. In all the
simulated cases, the desired operating conditions are achieved in a smooth and stable manner.

Figure 4. External mechanical torque Tm.

Figure 5. Mechanical angular velocity vs. its reference ωr, ωr,re f .
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Figure 6. DC-link voltage Vdc.

Figure 7. The d-axis stator current Ids.

Figure 8. The q-axis stator current Iqs.

Figure 9. Battery array current Ibat.
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Figure 10. The d-axis duty-ratio component mds.

Figure 11. q-axis duty-ratio component mqs.

Figure 12. Battery-side boost converter duty-ratio component mbat.

To further evaluate the very good system performance, a comparison of the proposed approach
with the commonly used on both the Li-ion battery and the PMSM converter power interfaces
conventional PI/PI cascaded control schemes are examined ([49], Chapter 14). In Figures 13 and 14
the DC-link voltage Vdc and motor speed ωr are presented for both cases. In order to have better
comparisons we focus on a limited duration between 55 and 95 s. One can easily see the superiority
of the proposed controllers since overshoots and oscillations are observed when the conventional
controllers are applied. This is an expected result, known in the literature [49], while the improvement
of the proposed approach is due to the fact it provides a complete design tool that enables effective
gain tuning for both the inner- and outer-loop controllers. It is worth noting that since the motor speed
directly impacts on the vehicle velocity response, even a small speed overshoot (or oscillation) is clearly
inconvenient for the EV passengers and therefore this point constitutes a critical design parameter.
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Figure 13. A detail of DC-link voltage Vdc responses between 55 and 95 s considering a classic PI and
the proposed control scheme.

Figure 14. A detail of mechanical angular velocity ωr responses between 55 and 95 s considering a
classic PI and the proposed control scheme.

7. Conclusions

A model based controller design for EV’s electromechanical systems with independent cascaded
loops is analyzed in detail. Furthermore, a complete stability analysis is conducted, by exploiting some
basic characteristics of the nonlinear, full system model. The analysis proves asymptotic stability at
the desired equilibrium, while certain control design guidelines are provided for the selection of the
controllers gains. Particularly, the main novelties proposed in this research work can be summarized
into: (i) application of independent controllers for each input, (ii) development of a suitable procedure
for the design of the proposed controllers, (iii) design verification supported by a rigorous stability
analysis, and (iv) validation of the system good performance concluded by extended simulations.
Thus, the main aim of the proposed approach, that is to keep simple controller structures familiar
to the industrial engineers, and simultaneously to guarantee stable operation is completely fulfilled.
The detailed analysis deployed by considering the system as a whole, constitutes the basic contribution
of the present work that in contrast to the conventional heuristic applications of simple P and PI control
schemes, provides a global methodology for the controller gains selection. The results fully verify the
effectiveness of the theoretical deployment and confirm the stable driving at the desired operation
point, indicating a smooth and satisfactory transient response.
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Nomenclature

b viscous friction coefficient
C capacitance of the DC-link
CL long term battery capacitance component
CS short term battery capacitance component
J moment of inertia
Lbat inductance of the battery boost converter
Lds d-axis stator inductance
Lqs q-axis stator inductance
p pole pairs
RL long term battery resistance component
RS short term battery resistance component
rs stator resistance
Rdc resistance of the DC-link
Rser series output battery resistance
P Proportional (controller)
PI Proportional-Integral (controller)
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